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Mu[tistep Methods

3.1 INTRODUCTION

The numerical methods for the solution of the differential equation
Yy =f(t,3),y ) = yo, t € [to, b] (3.1
are called multistep methods if the value of y (¢) at t = #,+, uses the values
of the dependent variable and its derivative at more than one grid or mesh
points. Let us suppose that we have already obtained approximate values of
of y and y' = f (¢, y) at the points tm = fo+mh, m = 1,2, ...,n. We denote
the approximate values at these points by
y(tm) = y"hf(tmx y (tm)) =fm: m = 0; 1’ ooy B
Then the general multistep or k-step method for the solution of (3.1) may
be written as
Yary = a; Yat@ayn_+ - +ak Yaksry+h D (tnss, thy -y tn—ky1»
y;.-H, y;’ cee y:l—k+l; h) (3-2)
where h is the constant stepsize and ay, a,, ... ax are real given constants. If
@ is independent of y,_,, then the general multistep method is called an

explicit, open or predictor method; otherwise an implicit, closed or corrector
method.

The truncation or discretization error of the method (3.2) at t = t, is given
by ’
T(y(tn), ) = y(tap)—a y (tn)— ... —ak y(tn_kyy)
-h ¢ (tn+1, t'ly LAY t"—k"'h'y' (t’H-‘l),
Y (ta), ooy ¥ (tn-ksp))  (3.3)
If p is the largest integer such that
| YT (y (ta), ) | = O (h?), (3.4)
then p is said to be the order of the general multistep method.
A linear form
Yaer = @ Ya+ay Yaeyt -0 Gk Ynokiy
+h(bo Yy +b1 Yt oo Fbry, ) (3.5)
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of (3.2) is called the general linear multistep method. The constants a;’s and
b’s are real and known. The k—1 values y|, y2,---, yx-; required to start the
computation in ¢3.5) are obtained, using the single step methods. The special
cases of the linear multistep method (3.5) are used for solving the initial
value problem (3.1).

3.2 EXPLICIT MULTISTEP METHODS

By integrating the differential equation y’ = f(1, y) between the limits
tn_; and a4, We get

tasy

yd =y )t | 1@ (3.6)

taay
To carry out integration in (3.6), we can approximate f (1, y) by a polyno-
mial which interpolates f(t, y) at k points ta, ta-1, --+» In-k+1. We will use
the Newton backward difference formula of degree (k—1) for this purpose.
If f (1, y) has k continuous derivatives, then we have

Pucy (1) = furb (et By (ot tie) Py

2! h
4 (t—ta) (t=tn_y) oo (t=tnkrd)  P*'fa
k=11 Kt
4+ =t (t—t"-l;)!m U=tukrd) cu (g (3.7)

where f™® (£) is the kth derivative of fevaluated at some £ in an interval
containing #, fn_k+; and fa.
Substituting u = (t—ta)/h in (3.7), we get

P"—l (’n+hu) =fn+u Vfa‘l"Luz.t_'L)‘ szn-!-...
o u(ut D) (utk—2)

} =D pr=t £,
I u(u+l)~}c-(!u+k—l) W (@)
- :i;; (_I)M( Ml (T ) Hf® (@) (3.8)
where ( "’: )=(_1),,, U(u+1).'.’;(!u+m—|)

Inserting (3.8) into (3.6) and putting dt = h du, we obtain
1

y e = yitaith | [T om0 ) oo

-3
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+ o ) @ ] an

k=1 :
=y (t_))+h Zo yapm fo+TE (3.9)
. _
where T = pk+1 j (—1)k( w ) £4 () du
iy} 0
1
() = 1| TUY ) o
vy j.( 1) ( m ) (3.10)
)

If we ignore the remainder term T in (3.9), we get

k=l .
Vg = ,1-,,—_;+11”L0 ol iy @a.1n
==

On calculating a few of v{) from (3.10), we obtain
7/
1

'y(g) = I du = 1+J
-j
1 1 [
PP = j udu =5 (I=5) (1+))
-j
1
W= | 7 ulendi= F -3+
3 :
F 1
) = g < 4 (t1) t2) du = 214 G=) B+i=j*+/?)
=i
1
PO = g QIZ" (u+1) (u+2) (u+3) du
—j
1 . . : ;
= 73g (251—90j2+110j3~ 4544 6j)
1

Y = j’ ]_.120- u (u+1) (u+2) (u+-3) (u-+4) du

=J

- ‘12170(5 —7) (954 19j—25/2+-35)% — 14j* +2j%)

An alternative form of formula (3.11) can be obtained if the differences il
are expressed in terms of the function values f,.
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Yio = .5254828+—1'l2 [23 (—.2761322)

—16 (~.3076785)+5(—.3449723)]
Yio = 4992074

Example 3.2 Apply the Adams-Bashforth formula of order four to y’ = t+y,
3(0) = 1 to compute approximation to y (1) with A = .1,

We need here the values of y (f) at ¢ = .1, .2 and .3 in order to start the
computation. These values are determined by the Runge-Kutta method or
Taylor's series method of the same order. The values have been obtained in
Example 2.2. The exact solution is

y (@) = 2et—t~-1
We have y () = 1.0
y (1) = 1.110342
y (.2) = 1.242806
y (.3) = 1.399718
and S (to, yo) = 1.000000
£(0.1, y(0.1)) = 1.210342
£(0.2, ¥(0.2))'= 1.442806
£(0.3, (0.3)) = 1.699718

Then
» (4) = 1399718+ [55 (1.699718)— 59 (1.442806)

437 (1.210342) - 9] = 1.583641

The computed value of y (.4) is in error in the last figure. Using the local
error estimate, we have

TP 1 < 2w Max 1790@ )|
where F®E) =y (€) = 2¢f
Therefore | TP | < 251X 1075 x2e
— 3.48611 X 1076 X 2.98364
or A | 79 1 € 0.11x 107

This bound is much larger than the actual error 0.8X10~5. The complete
solution is given in Table 3.2.
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TABLE 3.2 SOLUTION OF y’ = t+y, »(0) = 1, 0 < ¢t < 1 BY FOURTH ORDER
ADAMS-BASHFORTH METHOD, / = 0.1

Ia Yn y (t u)

0 1 1

0.1 1.1103418 1.1103418
0.2 1.2428055 1.2428055
0.3 1.3997176 1.3997176
0.4 1.5836409 1.5836494
0.5 1.7974227 1.7974425
0.6 2.0442050 2.0442376
0.7 2.3274574 2.3275054
0.8 2.6510185 2.6510819
0.9 3.0191182 3.0192062

1.0 3.4364501 3.4365637

3:2.2 Nystrom formulas (j = 1)
Substituting j = 1 in formula (3.11), we get
wi = ot 2k 5 Pk Pk 3G Pk 38 o
Yn+1 n-1 n 3 n 3 790 n ! a5 nT oo
In order to obtain the formula of order k, we retain the terms in the bracket

upto p*~! f, inclusive. Nystrom’s formula (j = 1) in terms of function
values is given by (3.13). The coefficient y;{" are given in Table 3.3.

TABLE 3.3 COEFFICIENTS FOR THE FORMULA

k-1
Vayy = yn_;'l"h Z 7;'(')_fn_u
m=0

k o 7, ® Y 0 y v
1 2
2 2 0
7 2 1
3 3 -3 3
8 5 4 1
4 3 -3 Kl -3
269 266 294 _l6 2
5 0 ) 90 90 90
219 406 574 426 169 28
6 50 —3% ) -9 90 )
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3.2.3 Formulas for j = 0,1, 3, §

The formula we get with j odd and with j differences retained in (3.11)
are of particular interest since in these cases it can be seen that the coeffi-
cient of the jth difference is zero, and the use of j—1 or j differences gives
the same accuracy. The coefficients ¥4, j = 0, 1, 3, 5 are given in Table 3.4.

TABLE 3.4 COEFFICIENTS FOR THE FORMULA

k—1
= G fuyj = 0) s
Yy }’~—J+hzy"g)V s J 1,3,5

m=0
j () i) v/ 4% () ()
0 1 1 5 3 251 475
2 12 3 720 1420

, 1 1 29 14

! 2 0 £l T %0 i
8 14 14
3 4 —4 T 0 r o
33

5 6 -12 15 -9 =T 0

3.2.4 Results from computation for predictor methods

We have used the Adams-Bashforth and Nystrom formulas of order two
to five to solve numerically the following initial value problems:

@y =-» »0) =1,
() y' =-y y(0) =1,
@Gii) ¥y =—t(y+y?), »(0) =1,

with stepsizes 27™, m = 5(1) 8.

Determining the starting values from the analytical solution, the computa-
tion has been carried out in double precision and the error values €, at

= § are tabulated in Tables 3.5 and 3.6.

From Table 3.5, we find that the high order Adams-Bashforth predictor
methods are best suited if high degree of accuracy is desired and the low
order predictor methods are best suited if accuracy requirements are low.

The Nystrom methods (see Table 3.6) produce inferior results in compa-
rison to the Adams-Bashforth methods. The error values for the high order
Nystrom methods are grossly inconsistent with the one for low order
methods. This indicates that the high order methods are not suitable with

respect to stability.



